Level 4

The precordial leads-what nobody ever tells you

In this chapter you will learn where to put the precordial leads and what they tell you about the heart.

How to place the precordial leads

The precordial leads show the electrical activity of the heart in the horizontal plane. Most commonly, six precordial leads are recorded. The precordial leads are registered in combination with the limb leads. You will learn more about the limb leads in Level 9 of this training.

Proper placement of the precordial leads V1 through V6.

The precordial leads are placed at predefined positions on the chest. Here's how to go about it:

1. First, find the second rib and the second intercostal space. Then count down to the fourth intercostal space. Attach V 1 in the fourth intercostal space on the right side of the sternum, and attach V 2 in the fourth intercostal space on the left side of the sternum.
2. After you've attached V 1 and V 2, attach V 4 at the intersection of the midclavicular line and the fifth intercostal space.
3. Attach V 3 exactly halfway in between V 2 and V 4 . From V 4 on, we don't need to worry about the intercostal spaces anymore; the subsequent leads are attached at the same horizontal level as V 4 .
4. V 5 is placed in the anterior axillary line (same level as V4).
5. V6 is placed in the midaxillary line (same level as V4).

Occasionally, two additional leads (V7 and V8) are also attached. V7 is located at the posterior axillary line (same level as V 4), and V 8 is attached at the scapular line (same level as V 4).

How to find and count the intercostal spaces correctly

The easiest way to find the fourth intercostal space is to look for the sternal angle. The sternal angle is a little edge in the upper third of the sternum (see image), which can be found in almost any patient. The second rib inserts right next to the sternal angle. Below the second rib is the second intercostal space. Then you just count down to the fourth and fifth intercostal spaces, respectively.

What anatomical regions are depicted by what leads?

Each precordial lead depicts a certain region of the heart. Some leads even depict more than one region. Let's say you see ST elevations on the ECG - a sign of myocardial infarction. Just by looking at the affected leads, you'll be able to tell where the infarction is located.

The changes in the right ventricular myocardium can be seen in leads $\mathrm{V} 1, \mathrm{~V} 2$, and V 3 .

But changes in the basal septum also can be detected in these leads, although usually only in V2 and V3.

V2, V3, V4: anterior wall of the LV If changes can be seen in $\mathrm{V} 2, \mathrm{~V} 3$, and V 4 , then the anterior wall of the left ventricle (and the septum) are affected.

V7, V8: posterior wall
V7 and V8 depict the posterior wall of the left ventricle.

V5, V6: lateral wall of the LV V5 and V6 show the lateral wall of the left ventricle.

Changes that are seen in the anterior AND the lateral walls are called anterolateral. Changes that are seen in the lateral and posterior walls are called posterolateral. Changes that are seen in the anterior wall and the septum are called anteroseptal.

The normal pattern

Each precordial lead has a typical ECG pattern. Try to remember this picture of normal chest leads:

The R/S ratio ("R to S ratio")

As the name implies, the R/S ratio compares the size of the R wave to the size of the S wave in each lead. Let's look at four examples. Please complete the calculations for examples 3 and 4 (answers are at the end of the chapter).

So why is the R/S ratio important?

There are two very important laws that apply under normal circumstances (ie., when the muscle mass of the left ventricle exceeds that of the right ventricle). Law number 1 says:

Leads with an R/S ratio <1 correspond to the right ventricle

VI

VB

$$
\begin{aligned}
& \text { vi } \\
& \left.\right|_{\mid} ^{\text {vi }} \\
& =1
\end{aligned}
$$

vb
>1

Leads with an R/S ratio >1 correspond to the left ventricle

R/S ratio
\&3
<1

$=1$
>1
1
VG
>1

Leads with an R/S ratio of $=1$ correspond to the transitional zone between right and left ventricle The transitional zone usually occurs at leads V3 or V4.

R/S ratio
vi

<1
v
vo

VB
<1
VA
$\int_{\text {vs }}$
>1
1
VG
>1

And law number 2 says:
Under normal circumstances, the R/S ratio increases as you go from right to left

When the transitional zone is off

As you learned above, the transitional zone (the dotted line separating right from left ventricle) usually occurs at V3 or V4, as depicted in this image:

But not every heart is the same. Sometimes, the heart is "rotated" in a clockwise or counterclockwise fashion along its longitudinal axis (going from the apex to the base of the heart).

When the heart is rotated in a clockwise fashion, the transitional zone shifts toward V5 or V6:

And when the heart is rotated in a counterclockwise fashion, the transitional zone occurs at V1 or V2:

You'll need to be able to tell whether a precordial lead depicts the right or the left ventricle. Knowledge about rotation is therefore critical.

Answers to R/S ratio calculations:

	Example 1	Example 2	Example 3	Example 4
$\mathrm{R}(\mathrm{mV})$	0.4	1.4	2.4	2.3
$\mathrm{S}(\mathrm{mV})$	2.0	1.4	0.3	0
R/S	0.4/2.0 $=1 / 5=0.2$	1.4/1.4 $=1$	8.0	∞

